Role of osteopontin in the regulation of human bladder cancer proliferation and migration in T24 cells.
نویسندگان
چکیده
Osteopontin (OPN), a secreted acid glycoprotein with a variety of functions, promotes tumor proliferation, differentiation, invasion and metastasis. The aim of the current study was to investigate whether OPN may serve as a potential therapeutic target for human bladder cancer. RNA interference (RNAi) was performed to downregulate the expression of the OPN gene in T24 human bladder cancer cells. The mRNA and protein expression levels of OPN following RNAi were determined using reverse transcription‑quantitative polymerase chain reaction and western blot analysis, respectively. In addition, the cell cycle progression, apoptosis and proliferation were investigated using by flow cytometric analysis and MTT assay. The cell invasion ability was measured using a Matrigel transwell assay. The mRNA and protein expression levels of OPN were found to be significantly downregulated following RNAi. The proliferation and invasion of T24 cells were significantly inhibited in vitro. In conclusion, RNAi‑targeting OPN may inhibit the proliferation, invasion and tumorigenicity of human bladder cancer cells. Therefore, OPN may serve as a potential therapeutic target for human bladder cancer.
منابع مشابه
Effect of Exposure to Quran Recitation on Cell Viability, Cell Migration, and BCL2L12 Gene Expression of Human Prostate Adenocarcinoma Cell Line in Culture
Background and Objectives: Prostate cancer is the third most important cause of cancer deaths and one of the most common cancers in the world. Given the limited knowledge on environmental sounds and their effects, the important role of sounds is neglected in every culture across the world. The aim of this study was to investigate the impact of Quran recitation on prostate cancer cell line (PC-3...
متن کاملEGCG inhibited bladder cancer T24 and 5637 cell proliferation and migration via PI3K/AKT pathway
Epigallocatechin-3-gallate (EGCG), the bioactive polyphenol in green tea, has been demonstrated to have various biological activities. We previously found that EGCG inhibited SW780 tumor growth by down-regulation of NF-κB and MMP-9. This study demonstrated that EGCG inhibited bladder cancer T24 and 5637 cell proliferation and migration via PI3K/AKT pathway, without modulation of NF-κB. Our resu...
متن کاملMiR-6165 Dysregulation in Breast Cancer and Its Effect on Cell Proliferation and Migration
Background: ncRNAs have been identified as oncogenic drivers and tumor suppressors in any type of cancer. Although many classes of ncRNAs have been reported, most studies have been performed on microRNAs (miRNAs). miRNAs can regulate several target genes and affect important processes such as homeostasis, angiogenesis, cell proliferation, differentiation, and apoptosis. Located in the p75NTR ge...
متن کاملEffect of siRNA targeting EZH2 on cell viability and apoptosis of bladder cancer T24 cells.
We investigated the effect of siRNA targeting enhancer of EZH2 on cell proliferation, invasion, migration, and apoptosis of human bladder cancer T24 cells. An siRNA-expressing plasmid targeting the EZH2 gene was transfected into T24 cells. Quantitative polymerase chain reaction and Western blot analysis were used to detect EZH2 expression at the mRNA and protein levels, respectively. Proliferat...
متن کاملInvestigating Anticancer Effects of Silver Nanoparticles on Bladder Cancer 5637 Cells in Comparison to Human Embryonic Kidney Normal Cells (HEK-293)
Background & aim: Nanotechnology is a modern research field with broad applications in cancer management. Among the various metal nanoparticles, silver nanoparticles (AgNPs) have been used in cancer therapy due to their promising anti-tumor properties. Despite the great advantages of AgNPs, their effects on normal cells have become a challenge. Besides, their anti-cancer effects have not previo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular medicine reports
دوره 11 5 شماره
صفحات -
تاریخ انتشار 2015